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Abstract— We describe a hierarchical model of invariant visual
pattern recognition in the visual cortex. In this model, the
knowledge of how patterns change when objects move is learned
and encapsulated in terms of high probability sequences at each
level of the hierarchy. Configuration of object parts is captured
by the patterns of coincident high probability sequences. This
knowledge is then encoded in a highly efficient Bayesian Network
structure.The learning algorithm uses a temporal stability crite-
rion to discover object concepts and movement patterns. We show
that the architecture and algorithms are biologically plausible.
The large scale architecture of the system matches the large scale
organization of the cortex and the micro-circuits derived from
the local computations match the anatomical data on cortical
circuits. The system exhibits invariance across a wide variety of
transformations and is robust in the presence of noise. Moreover,
the model also offers alternative explanations for various known
cortical phenomena.

I. I NTRODUCTION

Recognizing objects despite different scalings, rotations and
translations is something humans perform without conscious
effort, but this still is a hard problem for computer vision
algorithms.

We believe that the geometric invariances that humans so
effectively handle are intimately linked to the motion in this
world. When we move in this world while still looking at an
object, the patterns that fall on our retina change continuously
while the underlying cause for those patterns - the object itself
- remains the same. Rigid objects have the property that they
produce the same change of patterns for the same pattern of
motion. Rigid objects in this world can be thought of as the
underlying causes for persistent patterns on our retina. Thus,
learning persistent patterns on the retina would correspond to
learning objects in the visual world. Associating these patterns
with their causes corresponds to invariant pattern recognition.

In this model we use many concepts which are familiar
and accepted in neuroscience and computer vision. It well
known that the visual cortex is organized in a hierarchy
and several models of invariant pattern recognition [6][16]
make use of this. Temporal slowness has been shown to be a
plausible criterion for learning invariances [19] and our idea
of most likely sequences can be related to this. We derive our
architecture and algorithms based on the idea that the goal
of the cortex is to make predictions [7]. Predictive models

[14] can explain the role of feedback connections in the
cortex. However there are no predictive models available in
the literature that do invariant pattern recognition as well. The
framework of ideas that we use here was described in [7] and
we consider that as the starting point of the work we describe
here.

The rest of this paper is organized as follows. In section
2, we describe our system architecture and in section 3
the learning algorithm. In section 4 we describe how the
system performs invariant pattern recognition. In section 5 we
connect the architecture and algorithms to biology. In section
6 we describe the simulation setup and performance results.
Our model provides alternative explanations for some cortical
phenomena and these are explained in section 7. We conclude
the paper in section 8 with a discussion on related work.

II. A RCHITECTURE ANDASSUMPTIONS

The system we describe here is organized in a hierarchy and
our learning and recognition algorithms exploit this hierarchi-
cal structure. Each level in our system hierarchy has several
modules. These modules model cortical regions. A module
can have several children and one parent. Thus the modules
are arranged in a tree structure. The bottom most level is
called level1 and the level number increases as you go up
in the hierarchy. Inputs go directly to the modules at level1.
The level 1 modules have smallreceptive fieldscompared to
the size of the total image, i.e., these modules receive their
inputs from a small patch of the visual field. Several such
level 1 modules tile the visual field, possibly with overlap.
A module at level2 is connected to several adjoining level
1 modules below. Thus a level 2 module covers more of the
visual field compared to a level 1 module. However, a level
2 module gets it information only through a level 1 module.
This pattern is repeated in the hierarchy. Thus the receptive
field sizes increase as one goes up the hierarchy. The module
at the root of the tree covers the entire visual field, by pooling
inputs from its child modules. The set of level 1 modules can
be considered analogous to V1, the set of level 2 modules
analogous to V2 and so on.



Fig. 1. Learning Stages: Learning starts at the bottom of the hierarchy and proceeds to the top. The modules at the very top of the hierarchy
receive their inputs from a small section of the visual field. During Stage 1, these modules observe their inputs in time and learn themost
likely sequencesof a particular length of inputs. Once stage 1 learning is finished,these modules start passing up the index of the sequence
whenever they observe one of the most likely sequences at its inputs. A higher level module gets its inputs from several lower level modules.
During Stage 2, the higher level module learns frequent coincidences of sequence indices. These become the alphabets or concepts for the
higher level. Note that this alphabet abstracts what patterns occur together in space and time. During the third stage of the learning procedure,
the higher level concepts are fed down to the lower regions so that they learn the occurrences of the lower level patterns in the context of
the higher level concepts. Repeating this in a hierarchy we obtain a graphical model as shown in figure 1

III. L EARNING ALGORITHM

We describe our learning algorithm taking a two level
hierarchical arrangement as shown in figure 1 as the example.
The inputs to the system are given to the modules at the bottom
most level. Let the random variable prefixX indicate all the
the inputs to level 1 modules. Let{X(1)

n } and{X(2)
n } denote

the sequence of inputs to modules1 and2 in figure 1.
Learning in this model occurs in three stages. During

the first stage of learning, a module learns the most likely
sequences of its inputs. LetB

(l)
δ =

{
S

(m)
X,1 , S

(m)
X,2 , · · · , S

(m)
X,N

}
be the set of sequences of lengthl with their fraction of occur-
rences greater thanδ. A module learns this set empirically by
observing its sequence of inputs. Once a module has learned
B

(l)
δ , any high probability sequence seen by this module can be

uniquely represented by its indexk into the setB(l)
δ . At the end

of learning stage 1, a module has learnedB
(l)
δ and it produces

at its output the index of the high probability sequences that
it observes on its input.

A module enters the second stage of the learning process
once its child modules have finished the first stage of learning
and is communicating with this module in terms of the indices
of the high probability sequences of those modules. Lets
consider module number3 at the second level in figure 1. The
input to this module consists of the concatenation of the out-
puts from its child modules1 and2. A particular concatenation
represents a simultaneous occurrence of a combination of high
probability sequences in the child modules. Depending on the
spatio-temporal statistics of the inputs seen by the lower level
modules, some of these coincidences will occur frequently and
some will not. During the second stage of learning, a parent
module learns the most frequent coincidences (according to
an ε criterion) of sequences in the levels below it. We denote
the most frequent patterns at this level 2 module byY and the

number of such patterns byM . These patterns become the
alphabet for this module.

The third stage, called contextual embedding, involves feed-
back from the level 2 module to its child modules to embed
the the lower level patterns in the context of the higher level
patterns. This stage is initiated once the level 2 module has
formed its alphabetY as we described above. Assume that
at a particular point in time the higher level patternY = yk

is active. (This pattern was made active by the simultaneous
occurrence of a combination of sequences in lower levels).
This information, i.e., the index of the high level concept, is
fed back to the level 1 modules. This information is used by the
level 1 modules to obtain a conditional probability distribution
(CPD) matrix of its patterns given the patterns at a higher level.
During the learning process, this CPD matrix is updated by
incrementing the count for all level 1 patterns that were part
of the sequence which caused the high level patternyk. At
the end to the learning process, the rows of this matrix are
normalized to obtain the conditional probability distribution
P (X(1)|Y ) for module1 at level 1. This process is identical
for all the modules at level1.

The learning process defined above can be repeated in a
hierarchy. This is done by considering the frequent spatial
patterns seen by a module at any level to be the alphabet
of that region and then repeating stage 1, 2 and 3 of the
learning algorithms in a manner identical to the description
above. In our example, the learning can be continued between
levels 2 and 3 by considering the frequent spatial patternsY
of the level 2 module as its alphabet and then learning the high
probability sequences on this alphabet to continue to stages 2
and 3 of the algorithm.



Fig. 2. Structure of a typical Bayesian Network obtained at the
end of the learning procedure. The random variables at the bottom
level nodes correspond to quantizations of input patterns. The random
variables at intermediate levels represent object parts which move
together persistently. The random variables at the top node correspond
to objects. During training the definitions of the intermediate object-
parts and then the top-level objects are obtained using algorithms
described in figure 1. The probability tables are also filled according
to Stage 3 of figure 1.

IV. RECOGNITION AS INFERENCEIN A BAYESIAN

NETWORK

Once all the modules in the hierarchy have learned ac-
cording to the algorithms described in section 3, we get a
tree structured Bayesian Network [13], an example of which
is shown in figure 2. The modules correspond to the nodes
in a probabilistic graphical model and each node stores a
conditional probability distribution. Every module can be
thought of as having a set of states. The CPDs at each node
encode the probability distribution of the states of that module
given the state of its parent module.

If we assume that the learning algorithm has produced
meaningful states at each module of the hierarchy with the
states at the top of the hierarchy corresponding to object
categories, then the recognition problem can be defined as
follows. Given any imageI, find the most likely set of states
at each module, the combination of which best explains the
given image in a probabilistic sense. Specifically, ifW is the
set of all random variables corresponding to node states, then
the most probable explanation for the imageI is a set of
instantiationsw? of the random variables such that

P (w?|I) = max
w

P (w|I) (1)

If Z is the random variable representing the states at the top
of the hierarchy, then the category label that best explains any
given image is the index ofz?, wherez? is the assignment toZ
which maximized the above equation. Its a well known result
that given an acyclic Bayesian Network as the one we have
here, inference can be performed using local message passing.

Fig. 3. Belief Propagation and Cortical Anatomy: The belief
propagation equations that we used for inference in our model
has an anatomical mapping which matches anatomical data [18]
to a large extent. Shown here is the cortical circuit resulting from
such a mapping. This mapping enabled us to replicate some of the
physiological experiments in our system.

We use Pearl’s Bayesian Belief Propagation algorithm [13] to
obtain the most likely explanation given an image.

V. CONNECTION TOBIOLOGY

It is well known that cortical system is organized in a
hierarchy and by virtue of the connections, some regions
are hierarchically above some other [3]. Moreover, it is well
known that the receptive field size increases as you go up in the
hierarchy. It is generally accepted that neurons in the higher
level of the visual cortex represent more complex features with
neurons/columns in IT representing objects or object parts.
The lateral connections within layer 2-3 of the cortex and the
connections between layers 1,2 and 3 through the thalamus
could provide adequate mechanisms for learning of sequences
[7]. Thus the large scale organization of our system is in
agreement with the structure of the visual cortex.

We also found a fine mapping of these algorithms to the
cortical anatomy by mapping the Bayesian Belief Propagation
(BBP) [13] equations to a neural instantiation. A cortical
region can be thought of as encoding a set of concepts in
relation to the concepts encoded in regions hierarchically
above it. The set of concepts encoded by a region can be
thought of as a random variable. A cortical column represents
a particular value of this random variable. At every time
instant, the activity of a set of cells in a column represents
the probability that a particular hypothesis is active. The
feed forward and feed back connections to a cortical region
carry the Belief Propagation messages. Observed information
anywhere in the cortex is propagated to other regions through
these messages and can alter the probability values associated
with the hypotheses maintained by other regions. Figure 3
shows the detailed cortical micro-circuitry derived from BBP
equations. The anatomical details of this circuit match the
known anatomical data [18] to a great extent. The BBP
equations that we used for deriving this micro-circuit is given
as part of the appendix.



Fig. 4. Recognition: Shown here are examples of test images
that the system could recognize correctly along with their labels.
The system shows very robust scale, translation and distortion
invariance works well with very noisy inputs. Note that some
patterns (table lamp, dog) are recognized irrespective of their
orientation. The invariances developed in the system are the ones
to which the system is exposed to during the training phase.
Our system has the feature that small eye-movements during the
recognition stage improves performance. With eye-movements we
have a recognition accuracy of 97 percent for viewer drawn images.

Fig. 5. Prediction/Filling-in: This experiment demonstrates the
predictive capabilities of the system. The raw input (top left) is
very noisy and an immediate reconstruction using the information
in a 4x4 window has all the features wrong (top right). The
intermediate reconstruction (bottom left) is obtained by operating
the belief propagation till the second level in the hierarchy and
then passing the beliefs down to the lower level again. Thus the
intermediate level reconstruction the statistics of patterns in an 8x8
neighborhood. The global reconstruction (bottom right) is obtained
by doing the belief propagation globally. This reconstruction is
consistent with the recognition of the input as a helicopter.

Fig. 6. In this experiment we showed the system snapshots of 3
novel images at 10 randomly chosen positions. What is plotted is
the number of positions to which the system generalized for each of
these novel images (shown along the X axis). It can be seen that the
generalization performance goes down with increasing complexity of
the novel pattern.

VI. SIMULATION SETUP AND RESULTS

We simulated the above algorithms for a data set of line
drawing movies. These movies were created by simulating
straight-line motions of line drawings of objects belonging
to 91 classes. There were 10 exemplar images of different
scales for each category. Each image was of size 32 pixels
by 32 pixels. The movies were created by picking a random
category index and then moving the picture belonging to that
category in straight lines. Once a particular direction of motion
was picked, the object moved in that direction for a minimum

of 10 time steps before changing directions. An object that
was picked remained in the field of view for at least30 time
steps before a new object category was picked at random.
This way of simulating a movie gives us an infinitely long
input sequence to verify various performance aspects of the
algorithms described above. We describe the results of these
investigations in the following subsections.

All these simulations are based on a hierarchical arrange-
ment of modules as described in section 2. The system
consisted of 3 levels. The lowest level, level 1, consisted of
modules receiving inputs from a 4x4 patch of images. Sixty
four level 1 modules tiled an input image. Learning started
at L1 and proceeded to the higher levels. A level 2 module
received its inputs from 4 adjoining level 1 modules. There
were a total of 16 level 2 modules. A single level 3 module
received all the information from these level 2 modules.

A. Recognition, Prediction and Generalization

The full network was trained up according to the algorithm
described in section 3. Recognition is performed according
to the inference procedure outlined in section 4. An input
image to be recognized is converted to uncertain evidence
using a hamming distance metric on each module (at the
level of 4x4 pixels) as described in section 4. Recognition is
defined as obtaining the most likely explanation (MPE) of the
evidence given the conditional probabilities that we learned
on the graph. We used Pearl’s Bayesian Belief Propagation
algorithm for inference [13].

The system exhibited robust recognition performance in-
variant to large scale changes, deformations, translations and
noise. Figure 4 shows examples of correctly recognized im-
ages. Note that some categories are recognized irrespective



Fig. 7. Neurons Responding to Illusory Contours/Contour Con-
tinuation: Such neurons were observed in V1 [9]. Here we show
the results of an experiment which demonstrates analogous results.
Illusory contours are the result of the higher levels imposing its
knowledge of higher level structures on to the lower levels. To test
this we deleted a small portion of a familiar pattern and gave that as
the input to the system. This pattern (an incompletea) is shown in the
figure. We then recorded the activities of neurons in regions marked
A and B as a function of time. The image is shown to the system at
t = 0. Neuron 15 in of region B shows a robust response att = 0
because this region receives a perfect input that is tuned to neuron
15. Whereas, neuron 76 of region A does not show any response at
this time. At timet = 2 the information has propagated one level up
and has propagated back down. This forces region A to change its
current belief about its state, thus increasing the activity of neuron 76.
At t = 4, the global feedback information reaches all level 1 regions
and for region A, this increases the belief in neuron 76. Note that the
pattern corresponding to neuron 76 correctly fills the missing portion
of the input pattern. Neuron 15 is an example of a neuron in region
A whose activity was not affected by the feedback information. At
t = 4, all regions have received feedback from everywhere and hence
the responses do not change after this point.

of a flip about the vertical axis. This is because for those
categories, we included sequences which had a flip as a part
of the training sequences. This shows the capability of the
algorithm to learn the transformations it is exposed to during
the training. If the input is ambiguous, the cortex can gather
further information from the input by making small eye move-
ments. Many psycho-physical studies show that recognition
performance is greatly hampered when eye movements are
not allowed [11]. Between the eye-movements, the correct
hypothesis would remain stable while the competing incorrect
hypotheses will vary in a random manner. Our system exhibits
this property and we used it to improve the signal to noise ratio
during recognition.

A critical test for whether a system generalizes correctly
would be to test whether it can correct noisy or missing inputs
using its knowledge about the statistics of patterns. We tested
this for our system and the results are shown in figure 5.

We also tested that our system generalizes well when trained
on novel patterns. Generalization occurs in our system due
to the hierarchy. Objects are made of the same lower level
components. After having seen many images, the lower levels
of the system have seen everything that is there (sufficient
statistic) in the visual world at the spatial and temporal scales

Fig. 8. Shape perception reduces activity in lower levels [10]:
Our model offers an alternative explanation to this phenomenon
compared to the subtraction theory [10]. Reduction in activity occurs
because incorporating global information narrows the hypotheses
space maintained by a lower level region. In this experiment, we
showed our system a highly noisy picture of ahelicopterand recorded
the activity of the cells which represent the current belief in a
rectangular Level1(V1) region(pointed by the arrow). Att = 0,
the input is highly ambiguous as shown and hence the belief of the
region is highly spread out. Att = 1 the level 2 regions integrate the
information from multiple level 1 regions and feed back information
to level 1 regions. Att = 2, the level 1 region uses this information
to update its belief. Figure shows that this reduces the spread of
the belief as compared tot = 0. The corresponding picture of the
helicopter is the reconstruction at this stage if you take the best
guesses from all level 1 regions. Att = 4, the level 1 regions
get feedback which incorporates the global information. This further
narrows the posterior distribution. Note also that the reconstruction
at this point is the correct one.

of those modules. Thus if a new pattern is to be learned, most
of the lower level connections do not need to be changed at
all for learning that pattern. Figure 6 shows the generalization
performance of the system in learning new patterns.

VII. A LTERNATIVE EXPLANATIONS FOR BIOLOGICAL

PHENOMENA

Some physiological experiments [9] found that neurons in
V1 of the visual cortex respond to illusory contours in a
Kanizsa figure. This means that the neuron is responding to a
contour that does not exist in its receptive field. Another way
of interpreting this is that the activity of the neuron represents
the probability that a contour should be present in its input,
given its own input and the contextual information from above.
We found such neurons in our model using the anatomical
mapping we described in section 5. See figure 7 for the results
of our experiment.

Functional MRI studies [10] report that the perception of
an object in the Infero Temporal cortex reduces the activity
in lower levels of the hierarchy. We could observe this in
our model and we offer a Bayesian explanation for this
phenomenon as opposed to the current subtraction hypothesis
[10]. See figure 8 for details.

VIII. D ISCUSSION

Invariant pattern recognition has been an area of ac-
tive research for a long time. Earlier efforts used only



the spatial information in images to achieve invariant
representations[6][16][15]. However performance of these sys-
tems was limited and generalization questionable. We believe
that continuity of time is the cue that brain uses to solve the
invariance problem [5], [17]. Some recent models have used
temporal slowness as a criterion to learn representations [8],
[19], [2]. However those systems lacked a Bayesian inference-
prediction framework [9] and did not have any particular role
for feedback.

Our model captures multiple temporal and spatial scales
at the same time. This goes beyond the use of Hierarchical
Hidden Markov Models (HHMMs)[4] to capture structure at
multiple scales either in space or in time. Several other models
[1], [12] attempt to solve the invariance problem by explicitly
applying different scalings, rotations and translations in a
very efficient manner. However, as our test cases in section
4 indicate, none of the novel patterns we receive are pure
scalings or translations of stored patterns.

In our current system, sequence information is used only
during the training stage to form concepts at intermediate
levels. Future work will include methods for preserving this
sequence information so that the system can predict forward
in time. The current model deals only with the ventral visual
pathway of the cortex. Dealing with the dorsal pathway will
require integrating motor information with visual information.
This is also part of future work.

APPENDIX: BAYESIAN BELIEF PROPAGATION EQUATIONS

The following equations, adapted from [13] were used for
the derivation of the circuit shown in figure 3.

λ(yk) =
∏
j

λXj
(yk) (2)

π(yk) =
∑

z

P (yk|z)πY (z) (3)

BEL(yk) = αλ(yk)π(yk) (4)

λY (zm) =
∑

y

λ(y)P (y|zm) (5)

πXj
(yk) = απ(yk)

∏
i 6=j

λXi
(yk) (6)

These equations are specified with respect to a mod-
ule/region that encodes the random variableY . Equations 2 to
4 represent how the internal valuesλ(Y ), π(Y ) andBEL(Y )
are calculated from incoming messages and locally stored
probability tables. Equations 5 and 6 describe how to derive
the messages that are to be set as feed forward and feed back
outputs of this region. See [13] for more details on Belief
Propagation.
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